fbpx
Онлайн - школа прорыв

Телефон: +7 977 895 49 59

e-mail: info@ege100ballov.ru

ЕГЭ профиль № 9
Функция 2

На рисунке изображены графики функций f(x)=ax²+bx+c и g(x)=kx+d, которые пересекаются в точках A и В. Найдите абсциссу точки B.

ЕГЭ № 9 Функция

Решение:

f(x)=ax²+bx+c – квадратичная функция. 

График – парабола, ветви которой направлены вверх, значит a>0.

с – свободный член, который отвечает за пересечение параболы с осью у, тогда с=-4.

Уравнение параболы с учетом коэффициента “с” выглядит следующим образом:

f(x)=ax²+bx-4

Подставим координаты точки (1;1) в уравнение параболы:

1 = a+b-4

Получим: 

a+b = 5      (1)

Подставим координаты точки А(-2;-2) в уравнение параболы:

-2 = 4a-2b-4

Получим:

4a-2b = 2

Разделим обе части уравнения на 2:

2a-b = 1      (2)

Сложим (1) и (2):

3a = 6

a = 2

Подставим в (1) a = 2 и найдем b:

2+b = 5

b = 3

Получим следующее уравнение параболы:

f(x) =2x²+3x-4

g(x)=kx+d – линейная функция. 

График – прямая.

Подставим координаты точки (-1;2) в уравнение прямой:

2 = -k+d

d = k+2     (3)

Подставим координаты точки А(-2;-2) в уравнение прямой:

-2 = -2k+d     (4)

Подставим (3) в (4):

-2 = -2k+k+2

-2 = -k+2

k = 4

Тогда d = k+2 = 4+2 = 6.

Уравнение прямой с учетом коэффициентов “с” и  “d” выглядит следующим образом:

g(x) = 4x+6.

Имеем следующее:

f(x) =2x²+3x-4,

g(x) = 4x+6.

Так как функции пересекаются, то f(x) = g(x):

2x²+3x-4 = 4x+6

2x²-x-10=0

D = (-1)² – 4·2·(-10) =1 + 80 = 81

x = 2,5 – абсцисса точки В,

x₂ = -2 – абсцисса точки А.

Ответ: 2,5

 

Сурикова Надежда, репетитор по математике

Привет ! Меня зовут  Надежда. Я автор и ведущая курсов подготовки к ОГЭ и ЕГЭ по математике.

Последние записи :
Онлайн-школа "Прорыв"
онлайн-школа прорыв

ЗАДАТЬ ВОПРОС